Haiti

Last updated 2 March 2023

Current serverless endpoint: arn:aws:sagemaker:us-east-1:053061259712:endpoint/haiti3

Training summary

This is the first validated Greenstand model. Succinctly, we performed transfer learning using a pre-trained Pl@ntNet Inception v4 backbone that had been trained on the Pl@ntNet300K dataset. The model was further trained on Greenstand seedling data from The Haiti Tree Project (THTP) using 1,945 RGB images resized to 256 x 256 pixels from the 9 most common species. The data was augmented by applying horizontal flips (p=0.5), Gaussian blurs (kernel size of 3), brightness jitter (0.05), and contrast jitter (0.02).

Hyperparameters

  • 1240 train images, 312 validation images, 393 test images

  • 50 epochs

  • 16 batch size

  • Adam Optimizer with 0.001 learning rate and 0.0 weight decay

  • Focal loss (i.e. class-weighted cross-entropy)

  • 0.5 horizontal flip probability for augmentation

  • 3 Gaussian blur kernel size for augmentation

  • 0.05 brightness jitter for augmentation

  • 0.02 contrast jitter for augmentation

Results

Species
True Positive
False Positive
True Negative
False Negative
Frequency
Accuracy
Precision
Recall

ACACAURI

42

2

347

2

44

0.954545

0.954545

0.954545

ANACOCCI

23

1

367

2

25

0.920000

0.958333

0.920000

CATALONG

39

2

351

1

40

0.975000

0.951220

0.975000

CEDRODOR

61

4

325

3

64

0.953125

0.938462

0.953125

DOMBTORR

13

2

378

0

13

1.000000

0.866667

1.000000

GREVROBU

14

1

377

1

15

0.933333

0.933333

0.933333

MANGINDI

145

6

233

9

154

0.941558

0.960265

0.941558

SENNSIAM

10

0

381

2

12

0.833333

1.000000

0.833333

SIMAGLAU

25

1

366

1

26

0.961538

0.961538

0.961538

Overall test set accuracy: 0.947

Last updated

Was this helpful?