Haiti
Last updated 2 March 2023
Current serverless endpoint: arn:aws:sagemaker:us-east-1:053061259712:endpoint/haiti3
Training summary
This is the first validated Greenstand model. Succinctly, we performed transfer learning using a pre-trained Pl@ntNet Inception v4 backbone that had been trained on the Pl@ntNet300K dataset. The model was further trained on Greenstand seedling data from The Haiti Tree Project (THTP) using 1,945 RGB images resized to 256 x 256 pixels from the 9 most common species. The data was augmented by applying horizontal flips (p=0.5), Gaussian blurs (kernel size of 3), brightness jitter (0.05), and contrast jitter (0.02).
Hyperparameters
1240 train images, 312 validation images, 393 test images
50 epochs
16 batch size
Adam Optimizer with 0.001 learning rate and 0.0 weight decay
Focal loss (i.e. class-weighted cross-entropy)
0.5 horizontal flip probability for augmentation
3 Gaussian blur kernel size for augmentation
0.05 brightness jitter for augmentation
0.02 contrast jitter for augmentation
Results
ACACAURI
42
2
347
2
44
0.954545
0.954545
0.954545
ANACOCCI
23
1
367
2
25
0.920000
0.958333
0.920000
CATALONG
39
2
351
1
40
0.975000
0.951220
0.975000
CEDRODOR
61
4
325
3
64
0.953125
0.938462
0.953125
DOMBTORR
13
2
378
0
13
1.000000
0.866667
1.000000
GREVROBU
14
1
377
1
15
0.933333
0.933333
0.933333
MANGINDI
145
6
233
9
154
0.941558
0.960265
0.941558
SENNSIAM
10
0
381
2
12
0.833333
1.000000
0.833333
SIMAGLAU
25
1
366
1
26
0.961538
0.961538
0.961538
Overall test set accuracy: 0.947
Last updated
Was this helpful?